Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
2.
Emerg Microbes Infect ; 11(1): 2160-2175, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1997031

ABSTRACT

Pandemic outbreaks of viruses such as influenza virus or SARS-CoV-2 are associated with high morbidity and mortality and thus pose a massive threat to global health and economics. Physiologically relevant models are needed to study the viral life cycle, describe the pathophysiological consequences of viral infection, and explore possible drug targets and treatment options. While simple cell culture-based models do not reflect the tissue environment and systemic responses, animal models are linked with huge direct and indirect costs and ethical questions. Ex vivo platforms based on tissue explants have been introduced as suitable platforms to bridge the gap between cell culture and animal models. We established a murine lung tissue explant platform for two respiratory viruses, influenza A virus (IAV) and SARS-CoV-2. We observed efficient viral replication, associated with the release of inflammatory cytokines and the induction of an antiviral interferon response, comparable to ex vivo infection in human lung explants. Endolysosomal entry could be confirmed as a potential host target for pharmacological intervention, and the potential repurposing potentials of fluoxetine and interferons for host-directed therapy previously seen in vitro could be recapitulated in the ex vivo model.


Subject(s)
COVID-19 , Lung , Orthomyxoviridae Infections , Animals , Antiviral Agents/pharmacology , COVID-19/pathology , Fluoxetine/pharmacology , Humans , Influenza A virus/physiology , Influenza, Human/pathology , Interferons , Lung/virology , Mice , Orthomyxoviridae Infections/pathology , SARS-CoV-2/physiology , Tissue Culture Techniques , Virus Replication
3.
mBio ; 13(4): e0194422, 2022 08 30.
Article in English | MEDLINE | ID: covidwho-1986333

ABSTRACT

The human upper respiratory tract, specifically the nasopharyngeal epithelium, is the entry portal and primary infection site of respiratory viruses. Productive infection of SARS-CoV-2 in the nasal epithelium constitutes the cellular basis of viral pathogenesis and transmissibility. Yet a robust and well-characterized in vitro model of the nasal epithelium remained elusive. Here we report an organoid culture system of the nasal epithelium. We derived nasal organoids from easily accessible nasal epithelial cells with a perfect establishment rate. The derived nasal organoids were consecutively passaged for over 6 months. We then established differentiation protocols to generate 3-dimensional differentiated nasal organoids and organoid monolayers of 2-dimensional format that faithfully simulate the nasal epithelium. Moreover, when differentiated under a slightly acidic pH, the nasal organoid monolayers represented the optimal correlate of the native nasal epithelium for modeling the high infectivity of SARS-CoV-2, superior to all existing organoid models. Notably, the differentiated nasal organoid monolayers accurately recapitulated higher infectivity and replicative fitness of the Omicron variant than the prior variants. SARS-CoV-2, especially the more transmissible Delta and Omicron variants, destroyed ciliated cells and disassembled tight junctions, thereby facilitating virus spread and transmission. In conclusion, we establish a robust organoid culture system of the human nasal epithelium for modeling upper respiratory infections and provide a physiologically-relevant model for assessing the infectivity of SARS-CoV-2 emerging variants. IMPORTANCE An in vitro model of the nasal epithelium is imperative for understanding cell biology and virus-host interaction in the human upper respiratory tract. Here we report an organoid culture system of the nasal epithelium. Nasal organoids were derived from readily accessible nasal epithelial cells with perfect efficiency and stably expanded for more than 6 months. The long-term expandable nasal organoids were induced maturation into differentiated nasal organoids that morphologically and functionally simulate the nasal epithelium. The differentiated nasal organoids adequately recapitulated the higher infectivity and replicative fitness of SARS-CoV-2 emerging variants than the ancestral strain and revealed viral pathogenesis such as ciliary damage and tight junction disruption. Overall, we established a human nasal organoid culture system that enables a highly efficient reconstruction and stable expansion of the human nasal epithelium in culture plates, thus providing a facile and robust tool in the toolbox of microbiologists.


Subject(s)
COVID-19 , Nasal Mucosa , Organoids , SARS-CoV-2 , COVID-19/virology , Humans , Nasal Mucosa/virology , Organoids/virology , SARS-CoV-2/classification , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Tissue Culture Techniques
4.
Nature ; 603(7902): 706-714, 2022 03.
Article in English | MEDLINE | ID: covidwho-1764186

ABSTRACT

The SARS-CoV-2 Omicron BA.1 variant emerged in 20211 and has multiple mutations in its spike protein2. Here we show that the spike protein of Omicron has a higher affinity for ACE2 compared with Delta, and a marked change in its antigenicity increases Omicron's evasion of therapeutic monoclonal and vaccine-elicited polyclonal neutralizing antibodies after two doses. mRNA vaccination as a third vaccine dose rescues and broadens neutralization. Importantly, the antiviral drugs remdesivir and molnupiravir retain efficacy against Omicron BA.1. Replication was similar for Omicron and Delta virus isolates in human nasal epithelial cultures. However, in lung cells and gut cells, Omicron demonstrated lower replication. Omicron spike protein was less efficiently cleaved compared with Delta. The differences in replication were mapped to the entry efficiency of the virus on the basis of spike-pseudotyped virus assays. The defect in entry of Omicron pseudotyped virus to specific cell types effectively correlated with higher cellular RNA expression of TMPRSS2, and deletion of TMPRSS2 affected Delta entry to a greater extent than Omicron. Furthermore, drug inhibitors targeting specific entry pathways3 demonstrated that the Omicron spike inefficiently uses the cellular protease TMPRSS2, which promotes cell entry through plasma membrane fusion, with greater dependency on cell entry through the endocytic pathway. Consistent with suboptimal S1/S2 cleavage and inability to use TMPRSS2, syncytium formation by the Omicron spike was substantially impaired compared with the Delta spike. The less efficient spike cleavage of Omicron at S1/S2 is associated with a shift in cellular tropism away from TMPRSS2-expressing cells, with implications for altered pathogenesis.


Subject(s)
COVID-19/pathology , COVID-19/virology , Membrane Fusion , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Serine Endopeptidases/metabolism , Virus Internalization , Adult , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19 Vaccines/immunology , Cell Line , Cell Membrane/metabolism , Cell Membrane/virology , Chlorocebus aethiops , Convalescence , Female , Humans , Immune Sera/immunology , Intestines/pathology , Intestines/virology , Lung/pathology , Lung/virology , Male , Middle Aged , Mutation , Nasal Mucosa/pathology , Nasal Mucosa/virology , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Tissue Culture Techniques , Virulence , Virus Replication
5.
Nature ; 603(7902): 715-720, 2022 03.
Article in English | MEDLINE | ID: covidwho-1661972

ABSTRACT

The emergence of SARS-CoV-2 variants of concern with progressively increased transmissibility between humans is a threat to global public health. The Omicron variant of SARS-CoV-2 also evades immunity from natural infection or vaccines1, but it is unclear whether its exceptional transmissibility is due to immune evasion or intrinsic virological properties. Here we compared the replication competence and cellular tropism of the wild-type virus and the D614G, Alpha (B.1.1.7), Beta (B.1.351), Delta (B.1.617.2) and Omicron (B.1.1.529) variants in ex vivo explant cultures of human bronchi and lungs. We also evaluated the dependence on TMPRSS2 and cathepsins for infection. We show that Omicron replicates faster than all other SARS-CoV-2 variants studied in the bronchi but less efficiently in the lung parenchyma. All variants of concern have similar cellular tropism compared to the wild type. Omicron is more dependent on cathepsins than the other variants of concern tested, suggesting that the Omicron variant enters cells through a different route compared with the other variants. The lower replication competence of Omicron in the human lungs may explain the reduced severity of Omicron that is now being reported in epidemiological studies, although determinants of severity are multifactorial. These findings provide important biological correlates to previous epidemiological observations.


Subject(s)
Bronchi/virology , Lung/virology , SARS-CoV-2/growth & development , Viral Tropism , Virus Replication , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/epidemiology , COVID-19/transmission , COVID-19/virology , Cathepsins/metabolism , Chlorocebus aethiops , Endocytosis , Humans , In Vitro Techniques , SARS-CoV-2/immunology , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Tissue Culture Techniques , Vero Cells
6.
Int J Mol Sci ; 23(2)2022 Jan 13.
Article in English | MEDLINE | ID: covidwho-1625839

ABSTRACT

The global urgency to uncover medical countermeasures to combat the COVID-19 pandemic caused by the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) has revealed an unmet need for robust tissue culture models that faithfully recapitulate key features of human tissues and disease. Infection of the nose is considered the dominant initial site for SARS-CoV-2 infection and models that replicate this entry portal offer the greatest potential for examining and demonstrating the effectiveness of countermeasures designed to prevent or manage this highly communicable disease. Here, we test an air-liquid-interface (ALI) differentiated human nasal epithelium (HNE) culture system as a model of authentic SARS-CoV-2 infection. Progenitor cells (basal cells) were isolated from nasal turbinate brushings, expanded under conditionally reprogrammed cell (CRC) culture conditions and differentiated at ALI. Differentiated cells were inoculated with different SARS-CoV-2 clinical isolates. Infectious virus release into apical washes was determined by TCID50, while infected cells were visualized by immunofluorescence and confocal microscopy. We demonstrate robust, reproducible SARS-CoV-2 infection of ALI-HNE established from different donors. Viral entry and release occurred from the apical surface, and infection was primarily observed in ciliated cells. In contrast to the ancestral clinical isolate, the Delta variant caused considerable cell damage. Successful establishment of ALI-HNE is donor dependent. ALI-HNE recapitulate key features of human SARS-CoV-2 infection of the nose and can serve as a pre-clinical model without the need for invasive collection of human respiratory tissue samples.


Subject(s)
COVID-19/virology , Nasal Mucosa/cytology , Nasal Mucosa/virology , Tissue Culture Techniques/methods , Adolescent , Adult , Angiotensin-Converting Enzyme 2/metabolism , Cell Culture Techniques , Cell Differentiation , Epithelial Cells/cytology , Epithelial Cells/virology , Female , Humans , Male , Middle Aged , Models, Biological , SARS-CoV-2 , Virus Internalization
7.
PLoS Biol ; 19(12): e3001065, 2021 12.
Article in English | MEDLINE | ID: covidwho-1594053

ABSTRACT

The pandemic spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the etiological agent of Coronavirus Disease 2019 (COVID-19), represents an ongoing international health crisis. A key symptom of SARS-CoV-2 infection is the onset of fever, with a hyperthermic temperature range of 38 to 41°C. Fever is an evolutionarily conserved host response to microbial infection that can influence the outcome of viral pathogenicity and regulation of host innate and adaptive immune responses. However, it remains to be determined what effect elevated temperature has on SARS-CoV-2 replication. Utilizing a three-dimensional (3D) air-liquid interface (ALI) model that closely mimics the natural tissue physiology of SARS-CoV-2 infection in the respiratory airway, we identify tissue temperature to play an important role in the regulation of SARS-CoV-2 infection. Respiratory tissue incubated at 40°C remained permissive to SARS-CoV-2 entry but refractory to viral transcription, leading to significantly reduced levels of viral RNA replication and apical shedding of infectious virus. We identify tissue temperature to play an important role in the differential regulation of epithelial host responses to SARS-CoV-2 infection that impact upon multiple pathways, including intracellular immune regulation, without disruption to general transcription or epithelium integrity. We present the first evidence that febrile temperatures associated with COVID-19 inhibit SARS-CoV-2 replication in respiratory epithelia. Our data identify an important role for tissue temperature in the epithelial restriction of SARS-CoV-2 independently of canonical interferon (IFN)-mediated antiviral immune defenses.


Subject(s)
Epithelial Cells/immunology , Hot Temperature , Immunity, Innate/immunology , Interferons/immunology , Respiratory Mucosa/immunology , SARS-CoV-2/immunology , Virus Replication/immunology , Adolescent , Animals , COVID-19/genetics , COVID-19/immunology , COVID-19/virology , Chlorocebus aethiops , Epithelial Cells/metabolism , Epithelial Cells/virology , Female , Gene Expression Profiling/methods , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate/genetics , Interferons/genetics , Interferons/metabolism , Male , Middle Aged , Models, Biological , RNA-Seq/methods , Respiratory Mucosa/metabolism , Respiratory Mucosa/virology , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Tissue Culture Techniques , Vero Cells , Virus Replication/genetics , Virus Replication/physiology
8.
Cells ; 10(7)2021 06 26.
Article in English | MEDLINE | ID: covidwho-1389304

ABSTRACT

The lungs are affected by illnesses including asthma, chronic obstructive pulmonary disease, and infections such as influenza and SARS-CoV-2. Physiologically relevant models for respiratory conditions will be essential for new drug development. The composition and structure of the lung extracellular matrix (ECM) plays a major role in the function of the lung tissue and cells. Lung-on-chip models have been developed to address some of the limitations of current two-dimensional in vitro models. In this review, we describe various ECM substitutes utilized for modeling the respiratory system. We explore the application of lung-on-chip models to the study of cigarette smoke and electronic cigarette vapor. We discuss the challenges and opportunities related to model characterization with an emphasis on in situ characterization methods, both established and emerging. We discuss how further advancements in the field, through the incorporation of interstitial cells and ECM, have the potential to provide an effective tool for interrogating lung biology and disease, especially the mechanisms that involve the interstitial elements.


Subject(s)
Lab-On-A-Chip Devices , Lung Diseases/pathology , Lung/physiology , Regeneration/physiology , Respiratory Mucosa/cytology , COVID-19/pathology , COVID-19/therapy , COVID-19/virology , Cells, Cultured , Extracellular Matrix/physiology , Humans , Lung/cytology , Lung/pathology , Lung Diseases/physiopathology , Lung Diseases/therapy , Models, Biological , Respiratory Mucosa/pathology , Respiratory Mucosa/physiology , SARS-CoV-2/pathogenicity , Tissue Culture Techniques/instrumentation , Tissue Culture Techniques/methods
9.
Vet Res ; 52(1): 77, 2021 Jun 02.
Article in English | MEDLINE | ID: covidwho-1257965

ABSTRACT

The number and severity of diseases affecting lung development and adult respiratory function have stimulated great interest in developing new in vitro models to study lung in different species. Recent breakthroughs in 3-dimensional (3D) organoid cultures have led to new physiological in vitro models that better mimic the lung than conventional 2D cultures. Lung organoids simulate multiple aspects of the real organ, making them promising and useful models for studying organ development, function and disease (infection, cancer, genetic disease). Due to their dynamics in culture, they can serve as a sustainable source of functional cells (biobanking) and be manipulated genetically. Given the differences between species regarding developmental kinetics, the maturation of the lung at birth, the distribution of the different cell populations along the respiratory tract and species barriers for infectious diseases, there is a need for species-specific lung models capable of mimicking mammal lungs as they are of great interest for animal health and production, following the One Health approach. This paper reviews the latest developments in the growing field of lung organoids.


Subject(s)
Lung , Mammals , Organoids , Tissue Culture Techniques/methods , Animals , Lung/growth & development , Lung/pathology , Lung/physiopathology , Organoids/growth & development , Organoids/pathology , Organoids/physiopathology
10.
Development ; 148(12)2021 06 15.
Article in English | MEDLINE | ID: covidwho-1282286

ABSTRACT

The third 'Symposium for the Next Generation of Stem Cell Research' (SY-Stem) was held virtually on 3-5 March 2021, having been cancelled in 2020 due to the COVID-19 pandemic. As in previous years, the meeting highlighted the work of early career researchers, ranging from postgraduate students to young group leaders working in developmental and stem cell biology. Here, we summarize the excellent work presented at the Symposium, which covered topics ranging from pluripotency, species-specific aspects of development and emerging technologies, through to organoids, single-cell technology and clinical applications.


Subject(s)
Congresses as Topic/organization & administration , Inventions/trends , Stem Cell Research , Animals , COVID-19/epidemiology , Cell Differentiation , Congresses as Topic/history , Congresses as Topic/trends , History, 21st Century , Humans , Internet , Inventions/history , Online Systems , Pandemics , Single-Cell Analysis/methods , Single-Cell Analysis/trends , Stem Cell Research/history , Stem Cells/physiology , Tissue Culture Techniques/methods , Tissue Culture Techniques/trends
11.
Cell Metab ; 33(8): 1577-1591.e7, 2021 08 03.
Article in English | MEDLINE | ID: covidwho-1240259

ABSTRACT

Recent clinical data have suggested a correlation between coronavirus disease 2019 (COVID-19) and diabetes. Here, we describe the detection of SARS-CoV-2 viral antigen in pancreatic beta cells in autopsy samples from individuals with COVID-19. Single-cell RNA sequencing and immunostaining from ex vivo infections confirmed that multiple types of pancreatic islet cells were susceptible to SARS-CoV-2, eliciting a cellular stress response and the induction of chemokines. Upon SARS-CoV-2 infection, beta cells showed a lower expression of insulin and a higher expression of alpha and acinar cell markers, including glucagon and trypsin1, respectively, suggesting cellular transdifferentiation. Trajectory analysis indicated that SARS-CoV-2 induced eIF2-pathway-mediated beta cell transdifferentiation, a phenotype that could be reversed with trans-integrated stress response inhibitor (trans-ISRIB). Altogether, this study demonstrates an example of SARS-CoV-2 infection causing cell fate change, which provides further insight into the pathomechanisms of COVID-19.


Subject(s)
COVID-19/virology , Cell Transdifferentiation , Insulin-Secreting Cells/virology , SARS-CoV-2/pathogenicity , Acetamides/pharmacology , Adolescent , Adult , Aged , Aged, 80 and over , Animals , COVID-19/mortality , Cell Transdifferentiation/drug effects , Chlorocebus aethiops , Cyclohexylamines/pharmacology , Cytokines/metabolism , Eukaryotic Initiation Factor-2/metabolism , Female , Glucagon , Host-Pathogen Interactions , Humans , Insulin/metabolism , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Male , Middle Aged , Phenotype , Signal Transduction , Tissue Culture Techniques , Trypsin/metabolism , Vero Cells , Young Adult
12.
Aging (Albany NY) ; 13(2): 1571-1590, 2021 01 19.
Article in English | MEDLINE | ID: covidwho-1040203

ABSTRACT

The main aspects of severe COVID-19 disease pathogenesis include hyper-induction of proinflammatory cytokines, also known as 'cytokine storm', that precedes acute respiratory distress syndrome (ARDS) and often leads to death. COVID-19 patients often suffer from lung fibrosis, a serious and untreatable condition. There remains no effective treatment for these complications. Out of all cytokines, TNFα and IL-6 play crucial roles in cytokine storm pathogenesis and are likely responsible for the escalation in disease severity. These cytokines also partake in the molecular pathogenesis of fibrosis. Therefore, new approaches are urgently needed, that can efficiently and swiftly downregulate TNFα, IL-6, and the inflammatory cytokine cascade, in order to curb inflammation and prevent fibrosis, and lead to disease remission. Cannabis sativa has been proposed to modulate gene expression and inflammation and is under investigation for several potential therapeutic applications against autoinflammatory diseases and cancer. Here, we hypothesized that the extracts of novel C. sativa cultivars may be used to downregulate the expression of pro-inflammatory cytokines and pathways involved in inflammation and fibrosis. Initially, to analyze the anti-inflammatory effects of novel C. sativa cultivars, we used a well-established full thickness human 3D skin artificial EpiDermFTTM tissue model, whereby tissues were exposed to UV to induce inflammation and then treated with extracts of seven new cannabis cultivars. We noted that out of seven studied extracts of novel C. sativa cultivars, three (#4, #8 and #14) were the most effective, causing profound and concerted down-regulation of COX2, TNFα, IL-6, CCL2, and other cytokines and pathways related to inflammation and fibrosis. These data were further confirmed in the WI-38 lung fibroblast cell line model. Most importantly, one of the tested extracts had no effect at all, and one exerted effect that may be deleterious, signifying that careful cannabis cultivar selection must be based on thorough pre-clinical studies. The observed pronounced inhibition of TNFα and IL-6 is the most important finding, because these molecules are currently considered to be the main targets in COVID-19 cytokine storm and ARDS pathogenesis. Novel anti-TNFα and anti-IL-6 cannabis extracts can be useful additions to the current anti-inflammatory regimens to treat COVID-19, as well as various rheumatological diseases and conditions, and 'inflammaging' - the inflammatory underpinning of aging and frailty.


Subject(s)
COVID-19 , Cannabis , Cytokine Release Syndrome , Interleukin-6/antagonists & inhibitors , Plant Extracts/pharmacology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Anti-Inflammatory Agents/pharmacology , COVID-19/complications , Cannabinoids/pharmacology , Cell Line , Fibroblasts/drug effects , Humans , Inflammation/virology , SARS-CoV-2 , Skin/drug effects , Tissue Culture Techniques
13.
Nature ; 588(7839): 670-675, 2020 12.
Article in English | MEDLINE | ID: covidwho-943910

ABSTRACT

The distal lung contains terminal bronchioles and alveoli that facilitate gas exchange. Three-dimensional in vitro human distal lung culture systems would strongly facilitate the investigation of pathologies such as interstitial lung disease, cancer and coronavirus disease 2019 (COVID-19) pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we describe the development of a long-term feeder-free, chemically defined culture system for distal lung progenitors as organoids derived from single adult human alveolar epithelial type II (AT2) or KRT5+ basal cells. AT2 organoids were able to differentiate into AT1 cells, and basal cell organoids developed lumens lined with differentiated club and ciliated cells. Single-cell analysis of KRT5+ cells in basal organoids revealed a distinct population of ITGA6+ITGB4+ mitotic cells, whose offspring further segregated into a TNFRSF12Ahi subfraction that comprised about ten per cent of KRT5+ basal cells. This subpopulation formed clusters within terminal bronchioles and exhibited enriched clonogenic organoid growth activity. We created distal lung organoids with apical-out polarity to present ACE2 on the exposed external surface, facilitating infection of AT2 and basal cultures with SARS-CoV-2 and identifying club cells as a target population. This long-term, feeder-free culture of human distal lung organoids, coupled with single-cell analysis, identifies functional heterogeneity among basal cells and establishes a facile in vitro organoid model of human distal lung infections, including COVID-19-associated pneumonia.


Subject(s)
COVID-19/virology , Lung/cytology , Models, Biological , Organoids/cytology , Organoids/virology , SARS-CoV-2/physiology , Tissue Culture Techniques , Alveolar Epithelial Cells/cytology , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/virology , COVID-19/metabolism , COVID-19/pathology , Cell Differentiation , Cell Division , Clone Cells/cytology , Clone Cells/metabolism , Clone Cells/virology , Humans , In Vitro Techniques , Influenza A Virus, H1N1 Subtype/growth & development , Influenza A Virus, H1N1 Subtype/physiology , Integrin alpha6/analysis , Integrin beta4/analysis , Keratin-5/analysis , Organoids/metabolism , Pneumonia, Viral/metabolism , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , SARS-CoV-2/growth & development , Single-Cell Analysis , TWEAK Receptor/analysis
14.
Nature ; 592(7852): 116-121, 2021 04.
Article in English | MEDLINE | ID: covidwho-892040

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein substitution D614G became dominant during the coronavirus disease 2019 (COVID-19) pandemic1,2. However, the effect of this variant on viral spread and vaccine efficacy remains to be defined. Here we engineered the spike D614G substitution in the USA-WA1/2020 SARS-CoV-2 strain, and found that it enhances viral replication in human lung epithelial cells and primary human airway tissues by increasing the infectivity and stability of virions. Hamsters infected with SARS-CoV-2 expressing spike(D614G) (G614 virus) produced higher infectious titres in nasal washes and the trachea, but not in the lungs, supporting clinical evidence showing that the mutation enhances viral loads in the upper respiratory tract of COVID-19 patients and may increase transmission. Sera from hamsters infected with D614 virus exhibit modestly higher neutralization titres against G614 virus than against D614 virus, suggesting that the mutation is unlikely to reduce the ability of vaccines in clinical trials to protect against COVID-19, and that therapeutic antibodies should be tested against the circulating G614 virus. Together with clinical findings, our work underscores the importance of this variant in viral spread and its implications for vaccine efficacy and antibody therapy.


Subject(s)
COVID-19/transmission , COVID-19/virology , Genetic Fitness , Mutation , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics , Animals , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , COVID-19/immunology , COVID-19 Vaccines/immunology , Cricetinae , Disease Models, Animal , Humans , Lung/virology , Male , Mesocricetus/virology , Models, Biological , Nasal Mucosa/virology , Neutralization Tests , Protein Stability , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Tissue Culture Techniques , Trachea/virology , Viral Load , Virion/chemistry , Virion/pathogenicity , Virion/physiology , Virus Replication/genetics
16.
Avian Pathol ; 49(2): 185-192, 2020 Apr.
Article in English | MEDLINE | ID: covidwho-832997

ABSTRACT

To protect layers, breeders and grandparents against damage by infectious bronchitis virus infections during the laying period, vaccination using live priming followed by a boost with inactivated IB vaccine is commonly used. For many IB variants, homologous live vaccines are not available for priming. Very little is known about the efficacy of priming with heterologous live IB vaccines (or combination of live IB vaccines) to induce broad IB protection in long-living chickens. In this study, the protection levels induced by vaccination programmes with only heterologous live priming by a Massachusetts vaccine and a 4/91 vaccine, only a multivalent inactivated vaccine that contained D1466 antigen and a combination of both, against a D1466 challenge were compared. The infection with infectious bronchitis virus D1466, a genotype II, lineage 1 virus, was able to cause serious damage to the unvaccinated laying hens resulting in respiratory signs, a long-lasting drop in egg production and loss of egg quality. All three vaccination programmes induced significant levels of protection against challenge with a pathogenic D1466 strain. Overall, the vaccination programme using the broad heterologous live priming and the inactivated vaccine provided high protection against the combination of egg drop and loss of egg quality. The results showed that this combination of heterologous live vaccines was able to increase the efficacy of the inactivated infectious bronchitis virus vaccine despite the very low antigenic relationship of both live vaccines with the challenge strain.


Subject(s)
Chickens , Coronavirus Infections/veterinary , Infectious bronchitis virus , Poultry Diseases/prevention & control , Viral Vaccines/immunology , Animals , Coronavirus Infections/prevention & control , Eggs/standards , Female , Infectious bronchitis virus/immunology , Oviposition , Poultry Diseases/virology , Tissue Culture Techniques , Trachea , Vaccines, Inactivated/immunology
17.
Dis Model Mech ; 13(9)2020 09 01.
Article in English | MEDLINE | ID: covidwho-745043

ABSTRACT

The spread of the novel virus SARS coronavirus 2 (SARS-CoV-2) was explosive, with cases first identified in December 2019, and >22 million people infected and >775,000 deaths as of August 2020. SARS-CoV-2 can cause severe respiratory disease in humans leading to coronavirus disease 2019 (COVID-19). The development of effective clinical interventions, such as antivirals and vaccines that can limit or even prevent the burden and spread of SARS-CoV-2, is a global health priority. Testing of leading antivirals, monoclonal antibody therapies and vaccines against SARS-CoV-2 will require robust animal and cell models of viral pathogenesis. In this Special Article, we discuss the cell-based and animal models of SARS-CoV-2 infection and pathogenesis that have been described as of August 2020. We also outline the outstanding questions for which researchers can leverage animal and cell-based models to improve our understanding of SARS-CoV-2 pathogenesis and protective immunity. Taken together, the refinement of models of SARS-CoV-2 infection will be critical to guide the development of therapeutics and vaccines against SARS-CoV-2 to end the COVID-19 pandemic.


Subject(s)
Betacoronavirus/immunology , Betacoronavirus/pathogenicity , Coronavirus Infections/immunology , Coronavirus Infections/virology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Animals , Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , COVID-19 , COVID-19 Vaccines , Cells, Cultured , Coronavirus Infections/drug therapy , Coronavirus Infections/prevention & control , Disease Models, Animal , Host Microbial Interactions , Humans , Pandemics , Pneumonia, Viral/drug therapy , SARS-CoV-2 , Species Specificity , Tissue Culture Techniques , Viral Vaccines/therapeutic use , COVID-19 Drug Treatment
18.
Heart Rhythm ; 17(9): 1445-1451, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-436694

ABSTRACT

BACKGROUND: Early during the current coronavirus disease 19 (COVID-19) pandemic, hydroxychloroquine (HCQ) received a significant amount of attention as a potential antiviral treatment, such that it became one of the most commonly prescribed medications for COVID-19 patients. However, not only has the effectiveness of HCQ remained questionable, but mainly based on preclinical and a few small clinical studies, HCQ is known to be potentially arrhythmogenic, especially as a result of QT prolongation. OBJECTIVE: The purpose of this study was to investigate the arrhythmic effects of HCQ, as the heightened risk is especially relevant to COVID-19 patients, who are at higher risk for cardiac complications and arrhythmias at baseline. METHODS: An optical mapping technique utilizing voltage-sensitive fluorescent dyes was used to determine the arrhythmic effects of HCQ in ex vivo guinea pig and rabbit hearts perfused with the upper therapeutic serum dose of HCQ (1000 ng/mL). RESULTS: HCQ markedly increased action potential dispersion, resulted in development of repolarization alternans, and initiated polymorphic ventricular tachycardia. CONCLUSION: The study results further highlight the proarrhythmic effects of HCQ.


Subject(s)
Antimalarials/pharmacology , Heart Rate/drug effects , Heart/drug effects , Heart/physiopathology , Hydroxychloroquine/pharmacology , Animals , Cardiac Pacing, Artificial , Coronavirus Infections/drug therapy , Guinea Pigs , Heart/diagnostic imaging , Rabbits , Tissue Culture Techniques , Voltage-Sensitive Dye Imaging , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL